segunda-feira, 29 de fevereiro de 2016

Exercícios resolvidos do Diagrama de Venn (8.º A e B)

1) ( UFSE) Os senhores A, B e C concorriam à liderança de certo partido político. Para escolher o líder, cada eleitor votou apenas em dois candidatos de sua preferência. Houve 100 votos para A e B, 80 votos para B e C e 20 votos para A e C. Em consequência:

a) venceu A, com 120 votos.
b) venceu A, com 140 votos.
c) A e B empataram em primeiro lugar.
d) venceu B, com 140 votos.
e) venceu B, com 180 votos.

Resolução:
Votos recebidos pelo candidato A = 100 + 20 = 120
Votos recebidos pelo candidato B = 100 + 80 = 180
Votos recebidos pelo candidato C = 80 + 20 = 100



Resposta letra e.

2) (PUC) Numa comunidade constituída de 1800 pessoas há três programas de TV favoritos: Esporte (E), novela (N) e Humanismo (H). A tabela abaixo indica quantas pessoas assistem a esses programas.
Programas E  N HE e NE e HN e HE, N e HNenhum
Número de telespectadores40012201080  220 180 800     100  x
Através desses dados verifica-se que o número de pessoas da comunidade que não assistem a qualquer dos três programas é:
(A) 200       (C) 900  
(B) os dados do problema estão incorretos.     (D) 100                   (E) n.d.a.

Resolução:

No diagrama de Venn-Euler colocamos a quantidade de elementos dos conjuntos, começando sempre pela interseção que tem 100 elementos.
Então, 100 + 120 + 100 + 80 +700 + 200 + 300 + x = 1800. Segue que, 1600 + x = 1800. Logo, o número de pessoas da comunidade que não assistem a qualquer dos três programas é: x = 1800 - 1600 = 200.
Assim, (A) é a opção correta

Diagrama de Venn - Euler. Começamos sempre colocando o número de elementos da intersecção. Ao colocar o número de elementos de um conjunto, não podemos esquecer de descontar os da intersecção





3) Em uma prova discursiva de álgebra com apenas duas questões, 470 alunos acertaram somente uma das questões e 260 acertaram a segunda. Sendo que 90 alunos acertaram as duas e 210 alunos erraram a primeira questão. Quantos alunos fizeram a prova?

Resolução:

Temos que 90 acertaram as duas questões. Se 260 acertaram a segunda, então, 260 - 90 = 170 acertaram apenas a segunda questão. Se 470 acertaram somente uma das questões e 170 acertaram apenas a segunda, segue que, 470 - 170 = 300 acertaram somente a primeira. Como 210 erraram a primeira, incluindo os 170 que também erraram a primeira, temos que, 210 - 170 = 40 erraram as duas. Assim podemos montar o diagrama de Venn-Euler, onde: P1 é o conjunto dos que acertaram a primeira questão; P2 é o conjunto dos que acertaram a segunda e N é o conjunto dos que erraram as duas. Observe a interseção P1Ç P2 é o conjunto dos que acertaram as duas questões.
diagramas de conjuntos
Logo, o número de alunos que fizeram a prova é: 300 + 90 + 170 + 40 = 600.



4) Em uma escola foi realizada uma pesquisa sobre o gosto musical dos alunos. Os resultados foram os seguintes: 


458 alunos disseram que gostam de Rock
112 alunos optaram por Pop
36 alunos gostam de MPB
62 alunos gostam de Rock e Pop 

Determine quantos alunos foram entrevistados.
Gostam somente de Rock = 396
Gostam somente de Pop = 50
Gostam de Rock e Pop = 62
Gostam de MPB = 36

396 + 50 + 62 + 36 = 544

Através da distribuição dos dados no diagrama constatamos que o número de alunos entrevistados é igual a 544. 
 

 

Um comentário: